
WRITTEN TESTIMONY OF BRIAN BEHLENDORF.
CHIEF TECHNOLOGY OFFICER

COLLABNET
BEFORE THE COMMITTEE ON HOUSE ADMINISTRATION, ELECTIONS

SUBCOMMITTEE
U.S. HOUSE OF REPRESENTATIVES

MARCH 15, 2007

Members of the Committee, good afternoon and thank you for the opportunity to
speak to you this afternoon on the topic of "disclosed" and Open Source software. My
name is Brian Behlendorf. I am the Founder of CollabNet, a global company focused
on providing tools and services for collaborative software engineering, as best
exemplified by the Open Source software community. For the last 8 years I have served
as its Chief Technology Officer and Executive Board member.

Today I'm going to talk about how Open Source is the continuation of a series of
transformations that have taken place in the software industry. I'll explain how it has
become a dependable mechanism for software development and commerce, how it can
lead to more secure and trustable software, and how it serves the interests of the
customers by reducing vendor lock-in. I'll also explain the real differences between
Open Source and simply "disclosed" software, an understanding that is critical as you
look at the language of proposed legislation.

To further explain my context for these comments, I was a co-founder and the
first President of the Apache Software Foundation, a U.S.-based 501c3 nonprofit
organization responsible for the technology used in over 60% of the web sites in
existence today. Currently I serve on the Executive Board of the Mozilla Foundation,
the organization responsible for the Firefox web browser. I also served for three years
on the initial Executive Board of the Open Source Initiative, the organization
responsible for the defining the "Open Source" trademark and educating the public on
the concept. I speak today on my own behalf.

The software industry has seen a sequence of deep and often disruptive
transformations throughout its brief history, with each transformation creating new
opportunities and new industry leaders. The first major transformation, in the 1970s
and 1980s, was called "Open Systems", which promoted the unorthodox notion that
software should be built that could run on different kinds of hardware. Microsoft was
born during this transformation and profited tremendously from its premise, as did
many other software companies we know of today. Some other companies, such as
IBM, adapted to the changing environment, survived, and thrived. Others resisted the
move, and perished.

The second major transformation, which came to prominence in the early 1990s
and yet is still underway, was that of "Open Standards". The unorthodox notion this
time was that two companies, ten companies, or more could meet as peers and create
common vocabularies for interchanging data between different pieces of software. The
greater the number of software programs that used this common vocabulary, the greater
the total amount of value created. From this concept was born the Internet, the network
of networks, made possible only by the principle of sharing a common network
vocabulary (called TCP/IP) as widely as possible. As with the first transformation, we
saw new companies like Cisco and Sun emerge, we saw other existing companies adapt
and thrive, and we saw others resist and perish.

The third major transformation to have taken place in the software industry is that
of "Open Source" software. Open Source software is software licensed under a
generous copyright license; licenses that allow many kind of use at zero price, that
provide access to the underlying application "source code", that allow modification and
improvement, and that allow the recipient the right to share their modifications with
others. Here, the unorthodox notion is that this approach can result in fewer defects,
greater flexibility, more rapid innovation, more responsive vendors, and a more
competitive marketplace than the more proprietary alternatives.

Today, every major technology vendor releases some portion of its intellectual
property under an Open Source license. The business models these companies pursue to
justify such an investment are a mixture of support, services, and strategic opportunities
created for other proprietary offerings. Red Hat is the most famous example of this,
commanding a market capitalization of over $4B. Traditional technology companies
have embraced this too: Sun, HP, and IBM all have significant revenue streams based
on Open Source software. Even Microsoft has acknowledged some value to this
approach, not just by partnering with Novell to co-sell Linux to Microsoft customers,
but by also releasing some small Open Source projects themselves.

On the customer side, Open Source software has crossed the chasm from its early
adopter support amongst the engineers to enterprise production use. Every firm on
Wall Street I have talked to depends upon Linux and other Open Source software to
execute trades or conduct other financial transactions. Many consumer devices
invisibly embed Open Source technologies, from cell phones to Tivos to automobile
electronics. Within the public sector, the use of Open Source software has grown
tremendously, in such demanding agencies as the Pentagon, Commerce, Energy, and
Homeland Security. In all these environments, Open Source software and proprietary
software can co-exist, thanks to open standards and open systems.

Is Open Source software guaranteed to be more secure? In software, as anywhere
else, there are no guarantees. It is extremely challenging for even the most competent
engineers to write invulnerable code - it's as likely as planting and managing a garden
that has no weeds. New methods of attack are discovered all the time, and the re-use of
software in new settings can often open new holes. Yet the ability to prevent mistakes
or external compromise in certain situations, such as electronic voting systems, is
critical.

The only widely recognized indisputable method to achieve low-defect software is
developer peer review. Eric Raymond, the author of The Cathedral and the Bazaar, a
paper that first popularized the concepts around Open Source software, once said, "To
enough eyeballs, all bugs are shallow." The more widely inspected code is, the lesser
the chance of the undiscovered defect. This extends to the development process itself -
the larger the development team around a given body of code, and the more that the
deliberations of that team are opened to the outside world, the more reliable their
designs are likely to be. This "community" approach is the key ingredient to any
successful Open Source project.

An illustration of this is the OpenSSL project. Launched over 12 years ago, this
is a library of cryptographic routines and tools and functionality that is used to secure
everything from credit card and other sensitive transactions over the Internet, to "smart
cards" for accessing physical systems. This library has become the reference platform
for building cryptographically secure applications. Written by individuals working

around the world, this library has received extensive scrutiny from security
professionals and researchers worldwide, and has gained FIPS-140 certification for use
in U.S. government applications. Like any piece of software, there are bugs, and
occasionally one is found and reported to the development team. Rather than deny the
existence of such a bug, the public nature of the project forces them to embrace that
discovery, fix it as quickly as possible, and issue an update - often within a matter of
hours, almost always within a few days. This level of scrutiny, and the degree of
responsiveness, has built confidence in the hearts and minds of security professionals
everywhere in OpenSSL.

If this were a commercial product forced merely to "disclose" its source code with
carefully selected partners in a closed manner, the chances of a community forming to
review that work effectively and sufficiently to gain that same level of trust, are close
to zero. This is why the security and effectiveness of an "Open Source" system is not
merely about "disclosure", but about co-development between peers, and the creation
and promotion of common technologies to solve common problems.

Finally, the most useful aspect to choosing an Open Source product is the inherent
protection it can give against vendor lock-in. A support customer of one Linux vendor,
has the freedom to shift to another Linux vendor should they become dissatisfied with
the first. The customer's investment of training time on Linux, improvements to Linux,
and in technology on top of Linux, does not have to be thrown away should the
commercial relationships change. Open Source allows the redefinition of the traditional
relationship between customer and provider, from one of dependency towards one of
enablement and cooperation.

Customers of vendors selling Open Source electronic voting software necessarily
retain the legal rights to continue to use and improve the software, even if they elect to
switch to another vendor. The vendors will continue to have a lucrative market to
pursue - that of providing and maintaining the election hardware, the customization of
the software to each precinct's needs, and providing support services before, during, and
after the election. Such activities are complex enough to create plenty of opportunity
for relative competitive advantage for each vendor. Further, each vendor's R&D costs
would be reduced, as the development of common software is shared between multiple
vendors, and could involve volunteers, non-profit organizations, or government-funded
contributors. Viable Open Source software designed for voting systems already exist,
and have been used in elections in Australia, though no such system has yet been
deployed in the United States.

To summarize, the Open Source transformation taking place in the software
industry today is real, it is pro-business and pro-customer, and it has a tremendous
chance to build trust in the security and proper operation of such software. It alone can
not guarantee a trustable electoral process, but in conjunction with other solutions it can
play a key enabling role. And along the way, it can help redefine the relationship
between the public sector and the system vendors in favor of the public interest.

Thank you again for allowing me to testify.

Brian Behlendorf

